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Programming ENTER: 
Christopher Strachey’s Draughts Program 
David Link 

 

This article details some problems – and some solutions – encountered 
when resurrecting a program for the game of draughts from 1951 on an 
emulator of the Ferranti Mark I. 

The Ferranti Mark I was the industrial version of the Manchester Mark I, whose 
prototype, the Manchester “Baby” (SSEM), performed its first calculation on 21st 
June 1948. The algorithm here described was one of the earliest complex 
applications authored on the pioneer computer that did not only serve system 
testing purposes. Christopher Strachey, an outsider to the Manchester computer 
laboratory and a school teacher, had developed the software in his spare time. 
Martin Campbell-Kelly writes, relying on the oral histories from lab personnel: 

“Strachey sent his programme [draughts] for punching beforehand. The 
programme was about 20 pages long (over a thousand instructions), and the 
naiveté of a first-time user attempting a programme of such length caused not a 
little amusement among the programmers in the laboratory. Anyway, the day 
came and Strachey loaded his programme into the Mark I. After a couple of 
errors were fixed, the programme ran straight through and finished by playing 
God Save the King on the hooter (loudspeaker). On that day Strachey acquired a 
formidable reputation as a programmer that he never lost.” 

The material relating to the draughts program has been preserved in the 
Strachey papers in the Bodleian Library, Oxford. In it, there are found 
approximately five versions of an algorithm that is about 20 pages long, pencilled 
on the usual Manchester coding sheets. There are also printouts of sample 
games Strachey played against the machine at the time, which were recorded on 
the teleprinter. Dates on the papers indicate the software was mainly developed 
in June and July 1952. A first, undated version was probably written prior to May 
1951. (In a letter dated 15th May 1951, Strachey wrote to Turing: “I have 
completed my first effort at the Draughts” and he was obviously talking about 
the Manchester Mark I. At this point, the algorithm already had “input and output 
arrangements”). In February 1951, the Ferranti Mark I had been installed in 
Manchester University. Strachey gave a lecture about Draughts at the ACM 
conference in Toronto in September 1952, which was published in the 
Proceedings.  
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Game Machine User Experience 

When the software started, it asked the user to PLEASE READ THE 
INSTRUCTION CARD on the teleprinter. He would then hit a key labelled “KAC” 
on the console to signal he had done so. The algorithm asked him to spin a coin 
and claimed either heads or tails. The user let the program know via a switch 
and KAC if it had won or not to determine who had the right to start the game. 
Then human and machine made moves alternately, the latter by printing them 
on the teletype, the former by setting the hand-switches on the console and 
hitting KAC. The complete game was printed out, and two consecutive situations 
could always be inspected in parallel graphically on cathode ray tubes 3 and 5, 
which were part of the working memory of the machine. The software very 
probably constitutes the first usage of a graphical display in a computer program.  

 

Strachey had coded an additional “preview feature”: after the user had 
announced his move by setting it up on the switches, the machine showed the 
resulting position on cathode ray tube 3. If he then answered NO by composing 
///T on the console (bit 19 on), the algorithm reverted to the previous situation 
on the board and he could try something else. If the user input wrong 
information, the machine became increasingly angry, until it uttered: I REFUSE 
TO WASTE ANY MORE TIME. GO AND PLAY WITH A HUMAN BEING/. (The 
slash was probably used as an exclamation mark, which was missing in the 
teleprinter code.) A similar routine existed if the opponent took too long to reply. 
Strachey had apparently become fascinated with the slightly obscene theatrical 
effect of a machine making human-like statements and showing “emotion”. His 

The draughts board as shown by the storage CRT of the Ferranti Mark I, 
and a modern recreation by the author 
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next software was an inversion of this rather strict, impatient character, a 
program for the composition of love letters. Draughts already contains the 
complete “rhetoric” that is needed for it algorithmically, including the selection of 
pre-fabricated text based on random numbers. 

Coding a Game 

For the coding of the 
situation on the board, 
the white fields had 
been numbered from 0 
to 31, and three 32-bit 
variables (memory 
locations) named B, W, 
K respectively 
expressed the 
positions of black 
pieces, white pieces 
and kings of both 
colours by setting the 
corresponding bit = 1. 

A move sequence, on 
the other hand, 
consisted of two values 
in the same range, the 
fields from which and 
to which the piece was 
displaced, after which 
the position of a 
captured piece could 
follow, for example 23-
14, with the opponent 
hit on 18. The program 
also mastered multiple 

captures correctly. For setting up moves on the hand switches, Strachey 
employed an intuitive system rather close to decimal, where the first five bits 
indicated the tens (0 to 3), and the second and third the units (0-9) of the 
position number. 
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In this way, sequences such as “23-14 (18)” could be expressed as: 

 

(To end the move sequence and return control to the machine, the user had to 
hit KAC with nothing set. The first bit in each group signifies 0, the second 1, and 
so forth.) 

The strategy implemented in the game algorithm was a heuristic one, so one 
could claim draughts was the first heuristic program too. Strachey wrote that the 
difficulty of “the machine to look ahead for a number of moves and choose its 
move by a valuation scheme” was of great theoretical interest and presented a 
typical example of a “large logical programme”. Other games were less 
challenging, because “most of them use the complete mathematical theory so 
that the outcome … is no longer uncertain”. His program calculated the next 
move by looking ahead for a certain number of steps without being able to 
overview the complete game. By not trying to exhaust the endless number of 
combinatorial possibilities, he “succeeded in making a programme …, which will 
play a complete game of Draughts at a reasonable speed.” In fact, this is not 
true: There is no code to control the end game, to detect it is over and to 
announce a winner. To write a program that could handle the rather complex 
task of playing draughts must have been sensational at the time. 

The central element in the heuristics of the algorithm was the evaluation function 
for future positions. In it, the machine calculated all possible moves up to a 
certain depth and summed up the material left on the board resulting from each, 
counting three for a king and one for a normal piece. Theoretically, i.e. from the 
perspective of storage space, the algorithm could look ahead three operations on 
each side (with depth = 6), but in fact, due to the much more pressing limits on 
time, it was in most cases only anticipating three in total (depth = 3). Quite 
typically, as actual program performance can be very different from the planned 
one, the strategy had the serious flaw that the machine started to behave 
suicidally: As a result of the valuation scheme, it sacrificed all its pieces when the 
user was about to king. Strachey met this by adopting two different depths of 
search in such a way that in case one of the last two moves had been a capture, 
the machine calculated on. After that, it kept looking ahead until the second 
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depth value was reached. (In the run on 10.7.1952, this value (b) had been 1, 
with a (normal search) = 5.) 

Strachey had separated the strategic core of the algorithm from the service 
functions and commented: “It is rather typical of a logical programme: that this 
organising routine is in fact longer than the game-playing routine proper.” The 
latter was called DRAUGHTSB or DR/B and consisted of eight pages (in the 
version dated 10.7.1952), while for the service part (DRAUGHTSC) occupied 
another ten sheets, with four containing auxiliary functions. So, 18 or 22 pages 
in total, depending on the method of counting — incredibly long for the time. 

Resurrecting Draughts 

In the course of software reconstruction, usually parts start to work while others 
still malfunction and ultimately lead to a crash of the program one tries to 
resurrect. One technique here is to follow the algorithm through and to find the 
exact point where it starts to go wrong. This is usually slightly earlier in the 
executed code than the final crash. (It is astonishing how long programs can 
sometimes run on completely wrong grounds.) 

When the exact position of the aberration is found, this particular place in the 
code can be investigated and probably be fixed, provided the situation is not too 
complex. The software will then continue to execute, until it encounters another 
crash point, or ideally run through to the end, in which case the reconstruction 
succeeded. This technique of debugging already existed in the 1950s and there 
were dedicated “check sheets” to trace or log a program at runtime, i.e. to 
record the memory locations that changed in the sequence of the operations of 
the algorithm. 

In one such situation in the beginning of the resurrection of Draughts, the 
program was waiting for some time, and then went to a “hoot stop”. This was the 
symbolic equivalent of a crash, by which the software signalled that something 
had gone fundamentally wrong. 

Upon closer inspection, the algorithm was stuck in the following lines (see note 
below for an explanation of the notation): 

1 – T/: Accumulator (A) = 147456 
2 – TN: A = A−1 
3 – /M: go to line 2 if A >= 0 
4 – /I: switch M and L, the left and the right side of (A) 
5 – /H: continue execution of program if A >= 0 
6 – /T: go to hoot stop 
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In line 1, the 80-bit accumulator is set to a rather high number, 147456, by 
copying it from address VK in the working memory. It then counts this quantity 
down by subtracting the contents of address E: from it, which holds 1. This 
location is part of two pages of values that are kept in memory permanently, 
PERM. The third line is a conditional statement: If the accumulator is greater 
than 0, go to operation 2, where the number is again decremented. At one point, 
the value there will change from //////// //////// to ££££££££ 
££££££££, that is, from 0 to -1. Since a command takes 1.2 milliseconds to 
complete on the average, this will happen after approximately 5.9 minutes. The 
algorithm then continues in line 4. The operation here exchanges the left (L) and 
the right (M) 40 bits of the accumulator. Since it is set to all 1s, this produces 
the same number, ££££££££ ££££££££, which is -1. In line 5, the algorithm 
jumps to what is obviously the continuation of the program, if and only if the 
quantity in the accumulator is positive! Otherwise it enters the already-
mentioned hoot stop – an endless loop with no break condition, which consists of 
the following two lines: 

1 – /V: hoot 
2 – /P: go to 1 

In modern notation, the algorithm we just discussed could be rewritten in the 
following way: 

int i = 147456; 
while(i >= 0) i--; 
switchMandL(i); 
if(i < 0) hootStop(); 
else continue program execution 

This code seemed to make no sense at all! To understand it, it is useful to 
consider how signed numbers were represented in the Manchester Mark I. 
Generally, these were 40 or 80 “binary digits”, written with the most significant 
bit to the right. The handbook specified: “On the plus-minus convention the most 
significant digit is used to represent the sign.” To find out if the number in the 
80-bit accumulator was positive, it was sufficient to have a look at bit [79]: 
When it was 1, the number was negative. The machine automatically copied the 
value of this bit to the A-sign flip flop, and in case of an A-conditional statement, 
it consulted the data there. So again: How could the switching of the two sides of 
an accumulator full of 1s result in the 79th bit becoming zero? Apparently, the 
algorithm expected something that could never happen, an impossible event. 
Formulated differently, it was waiting for a miracle. (In very much the same way, 
the tautology while(true), which encloses the run loop in the core of most 
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programmes, can only be broken in the improbable event that truth is no longer 
truth. 

In the operating instructions, Strachey wrote that the “machine gives a ‘pip-pip’ 
signal when it requires attention. It should always be restarted by operating KAC 
after it [the machine] has been set appropriately.” He went on to give examples 
of what the computer would say and in which way to react to it. The KAC key 
was one of the several clearing switches the Manchester Mark I inherited from 
the “Baby” prototype and its function was to empty the accumulator. But would 
hitting KAC not lead to the same situation as counting it down until it reached 
zero? In both cases, the accumulator would first become all zeroes, = 0, and 
then all ones, = -1, when it was decremented in line 2. It was impossible to see 
any reason why the switching of the two parts would make the number positive. 
And yet, it was quite obvious that the code in question could do exactly this: tell 
the difference between counting down and hitting KAC. 

Analogies in Logical Design 

The solution to the riddle was that Strachey relied in his programming on the 
logical design of the Mark I, its hardware properties. I failed to make sense out 
of the code fragment for a rather long time, because I was looking at the 
machine on a purely symbolic level, where signs were transformed into other 
signs instructed by signs. The emulator was only an implementation of the 
Mark I’s operation codes and its effects on the contents of the stores. In this 
mode of thought, pushing a button was treated like a command, and more 
importantly, like a synchronous one. There was no difference between KAC and 
the operation code T:, which also cleared the accumulator. 

In writing, meaning is conveyed by material elements, the words and letters. In 
the same way, the data and operations in computers are represented by certain 
real systems with suitable properties, by a physical analogy. The function to clear 
the accumulator is implemented in certain electronic components, a Williams 
tube by the name of “A”, in a way that follows the logic of this device. Since 
something is stored here if it is refreshed, it is sufficient to prevent recirculation 
to delete the data. 

But it is not only the spatial physical analogy that counts, but also the temporal 
aspects of this simulation of thought processes. On the most basic level, 
computers move in cycles, which are subdivided in a number of phases in which 
certain predefined elementary actions take place. In the Manchester Mark I, 
there were seven of them: SCAN1 to SCAN3, and ACTION1 to ACTION4. The 
timing with respect to these also determined if an operation was synchronous or 
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asynchronous. In the logical design picture of the machine we are interested in 
here, it is important in which phase certain parts of commands are executed. 

Programming ENTER 

In comparison to the activities of the algorithm when it counts down the 
accumulator from 147456, what happens differently on the logical design level 
when the user hits KAC? The 80 bits of A are set to 0 and the software subtracts 
1 from it, making it negative, the A-sign flip flop is set and the program breaks 
from the first loop. What is important here is that the sign of A is identified after 
the arithmetic, but before the number re-circulated returns to the accumulator. 
Upon leaving the loop, the number (-1) is not re-circulated and hence A is empty 
again. When the algorithm switches M and L in a later cycle, the A-sign flip flop is 
clear and the program jumps to its continuation, not to the loop stop. The rather 
elaborate sequence thus simply detects if the KAC key has been pressed. In that 
case, the software jumps into the following code fragment: 

1 – /J: M += //// ///E 
2 – /H: go to 1 if A >= 0 

First, a number is added to the right part of the accumulator, equivalent to 
adding 1 into its 75th bit. Then, if the number is not negative, the procedure is 
repeated. Again, it seems quite impossible that by adding a positive quantity, the 
result can become negative. Obviously, the user is still holding down KAC when 
these statements are reached, which prevents recirculation, leaving the 
accumulator empty. Once the key is released, it starts to increment and at the 
16th addition this carries over into the sign bit. The algorithm jumps to its 
continuation. The code thus detects the release of KAC and waits if it stably stays 
in this position to prevent accidental bouncing of contacts to disturb user 
interaction. With the fragments described above, it formed a detection sequence 
for the typing (press / release) of the key. 

“Phew! that was a good exercise”, wrote Christopher P. Burton after mostly he 
had found out what the mysterious fragments meant. So the code was actually 
not waiting for the impossible. Strachey had simply constructed in software what 
would today be called an ENTER key. He needed it because of the way in which 
the user should communicate with the software: He set up on the console hand-
switches an answer like the next move to be played and signalled he had 
composed it by depressing ENTER. Interestingly, no key to “send” the carefully 
composed information to the machine existed on the console of the Mark I. But 
luckily enough, with some ingenuity, it could be programmed. 
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The Manchester Mark I and its Notation 

The Draughts program ran on the Ferranti version of the Manchester Mark I and 
Strachey used the notation established by Turing in the programming manual. 
The machine was based on a 20-bit word, and 20-bit numbers (and also 
instructions) were specified as four 5-bit elements, each element taking the 
name of the teleprinter code equivalent to the 5-bit value. Thus binary ‘00000’ 
was expressed as ‘/’ and ‘10000’ (least significant on the left) as ‘E’. The written 
form of numbers and instruction was quite opaque unless one was very familiar 
with all 32 of the possible teleprinter codes. The 5-bit value ‘11111’ was written 
as ‘£’. 

Most instructions contained a function (operation) number and a store address. 
The function number was six bits long so could be expressed as two teleprinter 
characters, the first of which was always ‘/’ or ‘T’ (‘00000’ or ‘00001’). The 
instructions relevant to this article have the following meanings: 

/H Jump direct if accumulator >= 
0 

/T Jump direct unconditionally 

/I Exchange most and least 
significant halves of 
accumulator 

/V Hoot (sound the loudspeaker) 

/J Add contents of a store location 
to most significant half of 
accumulator 

T/ Load accumulator with contents 
of a store location 

/M Jump relatively if accumulator 
is >= 0 

TN Subtract contents of a store 
location from accumulator 

/P Jump relatively unconditionally T: Clear the accumulator 

The Accumulator is 80 bits long, containing four 20-bit words. The most 
significant bit (bit 79) is the sign bit, 0 meaning that the number in the 
accumulator is zero or positive, and 1 meaning the number is negative. 

The author is indebted to Chris Burton for solving this, and other, enigmas. David 
Link would be very happy to hear from all readers who remember Strachey’s 
draughts program. He would also be extremely grateful for any hint on the 
whereabouts of other Mark I software, especially in the areas of meteorology, 
nuclear physics and chess. He can be contacted at david@khm.de; his website is 
alpha60.de. 


