

Resurrection Winter 2012/3 23

Programming ENTER:
Christopher Strachey’s Draughts Program
David Link

This article details some problems – and some solutions – encountered
when resurrecting a program for the game of draughts from 1951 on an
emulator of the Ferranti Mark I.

The Ferranti Mark I was the industrial version of the Manchester Mark I, whose
prototype, the Manchester “Baby” (SSEM), performed its first calculation on 21st
June 1948. The algorithm here described was one of the earliest complex
applications authored on the pioneer computer that did not only serve system
testing purposes. Christopher Strachey, an outsider to the Manchester computer
laboratory and a school teacher, had developed the software in his spare time.
Martin Campbell-Kelly writes, relying on the oral histories from lab personnel:

“Strachey sent his programme [draughts] for punching beforehand. The
programme was about 20 pages long (over a thousand instructions), and the
naiveté of a first-time user attempting a programme of such length caused not a
little amusement among the programmers in the laboratory. Anyway, the day
came and Strachey loaded his programme into the Mark I. After a couple of
errors were fixed, the programme ran straight through and finished by playing
God Save the King on the hooter (loudspeaker). On that day Strachey acquired a
formidable reputation as a programmer that he never lost.”

The material relating to the draughts program has been preserved in the
Strachey papers in the Bodleian Library, Oxford. In it, there are found
approximately five versions of an algorithm that is about 20 pages long, pencilled
on the usual Manchester coding sheets. There are also printouts of sample
games Strachey played against the machine at the time, which were recorded on
the teleprinter. Dates on the papers indicate the software was mainly developed
in June and July 1952. A first, undated version was probably written prior to May
1951. (In a letter dated 15th May 1951, Strachey wrote to Turing: “I have
completed my first effort at the Draughts” and he was obviously talking about
the Manchester Mark I. At this point, the algorithm already had “input and output
arrangements”). In February 1951, the Ferranti Mark I had been installed in
Manchester University. Strachey gave a lecture about Draughts at the ACM
conference in Toronto in September 1952, which was published in the
Proceedings.

24 Resurrection Winter 2012/3

Game Machine User Experience

When the software started, it asked the user to PLEASE READ THE
INSTRUCTION CARD on the teleprinter. He would then hit a key labelled “KAC”
on the console to signal he had done so. The algorithm asked him to spin a coin
and claimed either heads or tails. The user let the program know via a switch
and KAC if it had won or not to determine who had the right to start the game.
Then human and machine made moves alternately, the latter by printing them
on the teletype, the former by setting the hand-switches on the console and
hitting KAC. The complete game was printed out, and two consecutive situations
could always be inspected in parallel graphically on cathode ray tubes 3 and 5,
which were part of the working memory of the machine. The software very
probably constitutes the first usage of a graphical display in a computer program.

Strachey had coded an additional “preview feature”: after the user had
announced his move by setting it up on the switches, the machine showed the
resulting position on cathode ray tube 3. If he then answered NO by composing
///T on the console (bit 19 on), the algorithm reverted to the previous situation
on the board and he could try something else. If the user input wrong
information, the machine became increasingly angry, until it uttered: I REFUSE
TO WASTE ANY MORE TIME. GO AND PLAY WITH A HUMAN BEING/. (The
slash was probably used as an exclamation mark, which was missing in the
teleprinter code.) A similar routine existed if the opponent took too long to reply.
Strachey had apparently become fascinated with the slightly obscene theatrical
effect of a machine making human-like statements and showing “emotion”. His

The draughts board as shown by the storage CRT of the Ferranti Mark I,
and a modern recreation by the author

Resurrection Winter 2012/3 25

next software was an inversion of this rather strict, impatient character, a
program for the composition of love letters. Draughts already contains the
complete “rhetoric” that is needed for it algorithmically, including the selection of
pre-fabricated text based on random numbers.

Coding a Game

For the coding of the
situation on the board,
the white fields had
been numbered from 0
to 31, and three 32-bit
variables (memory
locations) named B, W,
K respectively
expressed the
positions of black
pieces, white pieces
and kings of both
colours by setting the
corresponding bit = 1.

A move sequence, on
the other hand,
consisted of two values
in the same range, the
fields from which and
to which the piece was
displaced, after which
the position of a
captured piece could
follow, for example 23-
14, with the opponent
hit on 18. The program
also mastered multiple

captures correctly. For setting up moves on the hand switches, Strachey
employed an intuitive system rather close to decimal, where the first five bits
indicated the tens (0 to 3), and the second and third the units (0-9) of the
position number.

26 Resurrection Winter 2012/3

In this way, sequences such as “23-14 (18)” could be expressed as:

(To end the move sequence and return control to the machine, the user had to
hit KAC with nothing set. The first bit in each group signifies 0, the second 1, and
so forth.)

The strategy implemented in the game algorithm was a heuristic one, so one
could claim draughts was the first heuristic program too. Strachey wrote that the
difficulty of “the machine to look ahead for a number of moves and choose its
move by a valuation scheme” was of great theoretical interest and presented a
typical example of a “large logical programme”. Other games were less
challenging, because “most of them use the complete mathematical theory so
that the outcome … is no longer uncertain”. His program calculated the next
move by looking ahead for a certain number of steps without being able to
overview the complete game. By not trying to exhaust the endless number of
combinatorial possibilities, he “succeeded in making a programme …, which will
play a complete game of Draughts at a reasonable speed.” In fact, this is not
true: There is no code to control the end game, to detect it is over and to
announce a winner. To write a program that could handle the rather complex
task of playing draughts must have been sensational at the time.

The central element in the heuristics of the algorithm was the evaluation function
for future positions. In it, the machine calculated all possible moves up to a
certain depth and summed up the material left on the board resulting from each,
counting three for a king and one for a normal piece. Theoretically, i.e. from the
perspective of storage space, the algorithm could look ahead three operations on
each side (with depth = 6), but in fact, due to the much more pressing limits on
time, it was in most cases only anticipating three in total (depth = 3). Quite
typically, as actual program performance can be very different from the planned
one, the strategy had the serious flaw that the machine started to behave
suicidally: As a result of the valuation scheme, it sacrificed all its pieces when the
user was about to king. Strachey met this by adopting two different depths of
search in such a way that in case one of the last two moves had been a capture,
the machine calculated on. After that, it kept looking ahead until the second

Resurrection Winter 2012/3 27

depth value was reached. (In the run on 10.7.1952, this value (b) had been 1,
with a (normal search) = 5.)

Strachey had separated the strategic core of the algorithm from the service
functions and commented: “It is rather typical of a logical programme: that this
organising routine is in fact longer than the game-playing routine proper.” The
latter was called DRAUGHTSB or DR/B and consisted of eight pages (in the
version dated 10.7.1952), while for the service part (DRAUGHTSC) occupied
another ten sheets, with four containing auxiliary functions. So, 18 or 22 pages
in total, depending on the method of counting — incredibly long for the time.

Resurrecting Draughts

In the course of software reconstruction, usually parts start to work while others
still malfunction and ultimately lead to a crash of the program one tries to
resurrect. One technique here is to follow the algorithm through and to find the
exact point where it starts to go wrong. This is usually slightly earlier in the
executed code than the final crash. (It is astonishing how long programs can
sometimes run on completely wrong grounds.)

When the exact position of the aberration is found, this particular place in the
code can be investigated and probably be fixed, provided the situation is not too
complex. The software will then continue to execute, until it encounters another
crash point, or ideally run through to the end, in which case the reconstruction
succeeded. This technique of debugging already existed in the 1950s and there
were dedicated “check sheets” to trace or log a program at runtime, i.e. to
record the memory locations that changed in the sequence of the operations of
the algorithm.

In one such situation in the beginning of the resurrection of Draughts, the
program was waiting for some time, and then went to a “hoot stop”. This was the
symbolic equivalent of a crash, by which the software signalled that something
had gone fundamentally wrong.

Upon closer inspection, the algorithm was stuck in the following lines (see note
below for an explanation of the notation):

1 – T/: Accumulator (A) = 147456
2 – TN: A = A−1
3 – /M: go to line 2 if A >= 0
4 – /I: switch M and L, the left and the right side of (A)
5 – /H: continue execution of program if A >= 0
6 – /T: go to hoot stop

28 Resurrection Winter 2012/3

In line 1, the 80-bit accumulator is set to a rather high number, 147456, by
copying it from address VK in the working memory. It then counts this quantity
down by subtracting the contents of address E: from it, which holds 1. This
location is part of two pages of values that are kept in memory permanently,
PERM. The third line is a conditional statement: If the accumulator is greater
than 0, go to operation 2, where the number is again decremented. At one point,
the value there will change from //////// //////// to ££££££££
££££££££, that is, from 0 to -1. Since a command takes 1.2 milliseconds to
complete on the average, this will happen after approximately 5.9 minutes. The
algorithm then continues in line 4. The operation here exchanges the left (L) and
the right (M) 40 bits of the accumulator. Since it is set to all 1s, this produces
the same number, ££££££££ ££££££££, which is -1. In line 5, the algorithm
jumps to what is obviously the continuation of the program, if and only if the
quantity in the accumulator is positive! Otherwise it enters the already-
mentioned hoot stop – an endless loop with no break condition, which consists of
the following two lines:

1 – /V: hoot
2 – /P: go to 1

In modern notation, the algorithm we just discussed could be rewritten in the
following way:

int i = 147456;
while(i >= 0) i--;
switchMandL(i);
if(i < 0) hootStop();
else continue program execution

This code seemed to make no sense at all! To understand it, it is useful to
consider how signed numbers were represented in the Manchester Mark I.
Generally, these were 40 or 80 “binary digits”, written with the most significant
bit to the right. The handbook specified: “On the plus-minus convention the most
significant digit is used to represent the sign.” To find out if the number in the
80-bit accumulator was positive, it was sufficient to have a look at bit [79]:
When it was 1, the number was negative. The machine automatically copied the
value of this bit to the A-sign flip flop, and in case of an A-conditional statement,
it consulted the data there. So again: How could the switching of the two sides of
an accumulator full of 1s result in the 79th bit becoming zero? Apparently, the
algorithm expected something that could never happen, an impossible event.
Formulated differently, it was waiting for a miracle. (In very much the same way,
the tautology while(true), which encloses the run loop in the core of most

Resurrection Winter 2012/3 29

programmes, can only be broken in the improbable event that truth is no longer
truth.

In the operating instructions, Strachey wrote that the “machine gives a ‘pip-pip’
signal when it requires attention. It should always be restarted by operating KAC
after it [the machine] has been set appropriately.” He went on to give examples
of what the computer would say and in which way to react to it. The KAC key
was one of the several clearing switches the Manchester Mark I inherited from
the “Baby” prototype and its function was to empty the accumulator. But would
hitting KAC not lead to the same situation as counting it down until it reached
zero? In both cases, the accumulator would first become all zeroes, = 0, and
then all ones, = -1, when it was decremented in line 2. It was impossible to see
any reason why the switching of the two parts would make the number positive.
And yet, it was quite obvious that the code in question could do exactly this: tell
the difference between counting down and hitting KAC.

Analogies in Logical Design

The solution to the riddle was that Strachey relied in his programming on the
logical design of the Mark I, its hardware properties. I failed to make sense out
of the code fragment for a rather long time, because I was looking at the
machine on a purely symbolic level, where signs were transformed into other
signs instructed by signs. The emulator was only an implementation of the
Mark I’s operation codes and its effects on the contents of the stores. In this
mode of thought, pushing a button was treated like a command, and more
importantly, like a synchronous one. There was no difference between KAC and
the operation code T:, which also cleared the accumulator.

In writing, meaning is conveyed by material elements, the words and letters. In
the same way, the data and operations in computers are represented by certain
real systems with suitable properties, by a physical analogy. The function to clear
the accumulator is implemented in certain electronic components, a Williams
tube by the name of “A”, in a way that follows the logic of this device. Since
something is stored here if it is refreshed, it is sufficient to prevent recirculation
to delete the data.

But it is not only the spatial physical analogy that counts, but also the temporal
aspects of this simulation of thought processes. On the most basic level,
computers move in cycles, which are subdivided in a number of phases in which
certain predefined elementary actions take place. In the Manchester Mark I,
there were seven of them: SCAN1 to SCAN3, and ACTION1 to ACTION4. The
timing with respect to these also determined if an operation was synchronous or

30 Resurrection Winter 2012/3

asynchronous. In the logical design picture of the machine we are interested in
here, it is important in which phase certain parts of commands are executed.

Programming ENTER

In comparison to the activities of the algorithm when it counts down the
accumulator from 147456, what happens differently on the logical design level
when the user hits KAC? The 80 bits of A are set to 0 and the software subtracts
1 from it, making it negative, the A-sign flip flop is set and the program breaks
from the first loop. What is important here is that the sign of A is identified after
the arithmetic, but before the number re-circulated returns to the accumulator.
Upon leaving the loop, the number (-1) is not re-circulated and hence A is empty
again. When the algorithm switches M and L in a later cycle, the A-sign flip flop is
clear and the program jumps to its continuation, not to the loop stop. The rather
elaborate sequence thus simply detects if the KAC key has been pressed. In that
case, the software jumps into the following code fragment:

1 – /J: M += //// ///E
2 – /H: go to 1 if A >= 0

First, a number is added to the right part of the accumulator, equivalent to
adding 1 into its 75th bit. Then, if the number is not negative, the procedure is
repeated. Again, it seems quite impossible that by adding a positive quantity, the
result can become negative. Obviously, the user is still holding down KAC when
these statements are reached, which prevents recirculation, leaving the
accumulator empty. Once the key is released, it starts to increment and at the
16th addition this carries over into the sign bit. The algorithm jumps to its
continuation. The code thus detects the release of KAC and waits if it stably stays
in this position to prevent accidental bouncing of contacts to disturb user
interaction. With the fragments described above, it formed a detection sequence
for the typing (press / release) of the key.

“Phew! that was a good exercise”, wrote Christopher P. Burton after mostly he
had found out what the mysterious fragments meant. So the code was actually
not waiting for the impossible. Strachey had simply constructed in software what
would today be called an ENTER key. He needed it because of the way in which
the user should communicate with the software: He set up on the console hand-
switches an answer like the next move to be played and signalled he had
composed it by depressing ENTER. Interestingly, no key to “send” the carefully
composed information to the machine existed on the console of the Mark I. But
luckily enough, with some ingenuity, it could be programmed.

Resurrection Winter 2012/3 31

The Manchester Mark I and its Notation

The Draughts program ran on the Ferranti version of the Manchester Mark I and
Strachey used the notation established by Turing in the programming manual.
The machine was based on a 20-bit word, and 20-bit numbers (and also
instructions) were specified as four 5-bit elements, each element taking the
name of the teleprinter code equivalent to the 5-bit value. Thus binary ‘00000’
was expressed as ‘/’ and ‘10000’ (least significant on the left) as ‘E’. The written
form of numbers and instruction was quite opaque unless one was very familiar
with all 32 of the possible teleprinter codes. The 5-bit value ‘11111’ was written
as ‘£’.

Most instructions contained a function (operation) number and a store address.
The function number was six bits long so could be expressed as two teleprinter
characters, the first of which was always ‘/’ or ‘T’ (‘00000’ or ‘00001’). The
instructions relevant to this article have the following meanings:

/H Jump direct if accumulator >=
0

/T Jump direct unconditionally

/I Exchange most and least
significant halves of
accumulator

/V Hoot (sound the loudspeaker)

/J Add contents of a store location
to most significant half of
accumulator

T/ Load accumulator with contents
of a store location

/M Jump relatively if accumulator
is >= 0

TN Subtract contents of a store
location from accumulator

/P Jump relatively unconditionally T: Clear the accumulator

The Accumulator is 80 bits long, containing four 20-bit words. The most
significant bit (bit 79) is the sign bit, 0 meaning that the number in the
accumulator is zero or positive, and 1 meaning the number is negative.

The author is indebted to Chris Burton for solving this, and other, enigmas. David
Link would be very happy to hear from all readers who remember Strachey’s
draughts program. He would also be extremely grateful for any hint on the
whereabouts of other Mark I software, especially in the areas of meteorology,
nuclear physics and chess. He can be contacted at david@khm.de; his website is
alpha60.de.

